Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0620920220540091450
Experimental & Molecular Medicine
2022 Volume.54 No. 9 p.1450 ~ p.1460
BMS794833 inhibits macrophage efferocytosis by directly binding to MERTK and inhibiting its activity
Bae Seung-Hyun

Kim Jung-Hoon
Park Tae-Hyun
Lee Kyeong
Lee Byung-Il
Jang Hyon-Chol
Abstract
Myeloid epithelial reproductive proto-oncogene tyrosine kinase (MERTK) plays an essential role in modulating cancer immune tolerance by regulating macrophage efferocytosis. Studies are underway to develop small-molecule chemicals that inhibit MERTK as cancer immunotherapeutic agents, but these efforts are in their early stages. This study identified BMS794833, whose primary targets are MET and VEGFR2, as a potent MERTK inhibitor and developed a real-time efferocytosis monitoring system. The X-ray cocrystal structure revealed that BMS794833 was in contact with the ATP-binding pocket and the allosteric back pocket, rendering MERTK inactive. Homogeneous time-resolved fluorescence kinetic and Western blotting analyses showed that BMS794833 competitively inhibited MERTK activity in vitro and inhibited the autophosphorylation of MERTK in macrophages. We developed a system to monitor MERTK-dependent efferocytosis in real time, and using this system, we confirmed that BMS794833 significantly inhibited the efferocytosis of differentiated macrophages. Finally, BMS794833 significantly inhibited efferocytosis in vivo in a mouse model. These data show that BMS794833 is a type II MERTK inhibitor that regulates macrophage efferocytosis. In addition, the real-time efferocytosis monitoring technology developed in this study has great potential for future applications.
KEYWORD
Biochemistry, Cell biology
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø